3.2.20 \(\int \frac {\csc ^3(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx\) [120]

3.2.20.1 Optimal result
3.2.20.2 Mathematica [B] (verified)
3.2.20.3 Rubi [A] (verified)
3.2.20.4 Maple [B] (warning: unable to verify)
3.2.20.5 Fricas [A] (verification not implemented)
3.2.20.6 Sympy [F]
3.2.20.7 Maxima [F]
3.2.20.8 Giac [F]
3.2.20.9 Mupad [F(-1)]

3.2.20.1 Optimal result

Integrand size = 25, antiderivative size = 91 \[ \int \frac {\csc ^3(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx=-\frac {(a-b) \text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{2 a^{3/2} f}-\frac {\cot (e+f x) \csc (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{2 a f} \]

output
-1/2*(a-b)*arctanh(sec(f*x+e)*a^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))/a^(3/2)/ 
f-1/2*cot(f*x+e)*csc(f*x+e)*(a-b+b*sec(f*x+e)^2)^(1/2)/a/f
 
3.2.20.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(367\) vs. \(2(91)=182\).

Time = 3.79 (sec) , antiderivative size = 367, normalized size of antiderivative = 4.03 \[ \int \frac {\csc ^3(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx=\frac {\cot ^2(e+f x) \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^2(e+f x)} \left (2 (-a+b) \log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )-\left (-2 (a-b) \log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )+\sqrt {2} \sqrt {a} \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^4\left (\frac {1}{2} (e+f x)\right )}\right ) \sec (e+f x)+8 (a-b) \text {arctanh}\left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-\frac {\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{\sqrt {a}}\right ) \sec (e+f x) \sin ^2\left (\frac {1}{2} (e+f x)\right )\right )}{4 a^{3/2} f \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^4\left (\frac {1}{2} (e+f x)\right )}} \]

input
Integrate[Csc[e + f*x]^3/Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
(Cot[e + f*x]^2*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[e + f*x]^2]*(2 
*(-a + b)*Log[a - 2*b - a*Tan[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f 
*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]] - (-2*(a - b)*Log[a - 2*b - a*T 
an[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + 
 f*x)/2]^2)^2]] + Sqrt[2]*Sqrt[a]*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])* 
Sec[(e + f*x)/2]^4])*Sec[e + f*x] + 8*(a - b)*ArcTanh[Tan[(e + f*x)/2]^2 - 
 Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]/Sqrt[a]]*Sec 
[e + f*x]*Sin[(e + f*x)/2]^2))/(4*a^(3/2)*f*Sqrt[(a + b + (a - b)*Cos[2*(e 
 + f*x)])*Sec[(e + f*x)/2]^4])
 
3.2.20.3 Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.07, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3042, 4147, 373, 27, 291, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc ^3(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (e+f x)^3 \sqrt {a+b \tan (e+f x)^2}}dx\)

\(\Big \downarrow \) 4147

\(\displaystyle \frac {\int \frac {\sec ^2(e+f x)}{\left (1-\sec ^2(e+f x)\right )^2 \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 373

\(\displaystyle \frac {\frac {\sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 a \left (1-\sec ^2(e+f x)\right )}-\frac {\int \frac {a-b}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)}{2 a}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 a \left (1-\sec ^2(e+f x)\right )}-\frac {(a-b) \int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)}{2 a}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 a \left (1-\sec ^2(e+f x)\right )}-\frac {(a-b) \int \frac {1}{1-\frac {a \sec ^2(e+f x)}{b \sec ^2(e+f x)+a-b}}d\frac {\sec (e+f x)}{\sqrt {b \sec ^2(e+f x)+a-b}}}{2 a}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 a \left (1-\sec ^2(e+f x)\right )}-\frac {(a-b) \text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{2 a^{3/2}}}{f}\)

input
Int[Csc[e + f*x]^3/Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
(-1/2*((a - b)*ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^ 
2]])/a^(3/2) + (Sec[e + f*x]*Sqrt[a - b + b*Sec[e + f*x]^2])/(2*a*(1 - Sec 
[e + f*x]^2)))/f
 

3.2.20.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 373
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 
1)/(2*(b*c - a*d)*(p + 1))), x] - Simp[e^2/(2*(b*c - a*d)*(p + 1))   Int[(e 
*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(m - 1) + d*(m + 2*p + 
 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 
 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntBinomialQ[a, b, c, d, e, 
m, 2, p, q, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4147
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Simp[1/(f*ff^ 
m)   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a - b + b*ff^2*x^2)^p/x^(m + 1 
)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[( 
m - 1)/2]
 
3.2.20.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(954\) vs. \(2(79)=158\).

Time = 0.94 (sec) , antiderivative size = 955, normalized size of antiderivative = 10.49

method result size
default \(\text {Expression too large to display}\) \(955\)

input
int(csc(f*x+e)^3/(a+b*tan(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/8/f/a^(5/2)*(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc( 
f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)/((a*(-cos(f*x+e)+1)^4 
*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc 
(f*x+e)^2+a)/((-cos(f*x+e)+1)^2*csc(f*x+e)^2-1)^2)^(1/2)/((-cos(f*x+e)+1)^ 
2*csc(f*x+e)^2-1)/(-cos(f*x+e)+1)^2*((a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a 
*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2 
)*a^(3/2)*(-cos(f*x+e)+1)^2+2*ln((a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+(a*(-co 
s(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f* 
x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)*a^(1/2)-a+2*b)/a^(1/2))*a^2*(-cos(f*x+e)+1 
)^2+2*ln(2/(-cos(f*x+e)+1)^2*(-a*(-cos(f*x+e)+1)^2+2*b*(-cos(f*x+e)+1)^2+( 
a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(- 
cos(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)*a^(1/2)*sin(f*x+e)^2+a*sin(f*x+e)^2) 
)*a^2*(-cos(f*x+e)+1)^2-2*ln((a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+(a*(-cos(f* 
x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e) 
+1)^2*csc(f*x+e)^2+a)^(1/2)*a^(1/2)-a+2*b)/a^(1/2))*a*(-cos(f*x+e)+1)^2*b- 
2*ln(2/(-cos(f*x+e)+1)^2*(-a*(-cos(f*x+e)+1)^2+2*b*(-cos(f*x+e)+1)^2+(a*(- 
cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos( 
f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)*a^(1/2)*sin(f*x+e)^2+a*sin(f*x+e)^2))*a* 
(-cos(f*x+e)+1)^2*b+(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^ 
2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)*a^(3/2)*sin(...
 
3.2.20.5 Fricas [A] (verification not implemented)

Time = 0.39 (sec) , antiderivative size = 284, normalized size of antiderivative = 3.12 \[ \int \frac {\csc ^3(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx=\left [\frac {2 \, a \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) - {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} - a + b\right )} \sqrt {a} \log \left (-\frac {2 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt {a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{4 \, {\left (a^{2} f \cos \left (f x + e\right )^{2} - a^{2} f\right )}}, \frac {{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} - a + b\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a}\right ) + a \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{2 \, {\left (a^{2} f \cos \left (f x + e\right )^{2} - a^{2} f\right )}}\right ] \]

input
integrate(csc(f*x+e)^3/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
[1/4*(2*a*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) - 
 ((a - b)*cos(f*x + e)^2 - a + b)*sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 + 
 2*sqrt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) 
+ a + b)/(cos(f*x + e)^2 - 1)))/(a^2*f*cos(f*x + e)^2 - a^2*f), 1/2*(((a - 
 b)*cos(f*x + e)^2 - a + b)*sqrt(-a)*arctan(sqrt(-a)*sqrt(((a - b)*cos(f*x 
 + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a) + a*sqrt(((a - b)*cos(f*x + e 
)^2 + b)/cos(f*x + e)^2)*cos(f*x + e))/(a^2*f*cos(f*x + e)^2 - a^2*f)]
 
3.2.20.6 Sympy [F]

\[ \int \frac {\csc ^3(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx=\int \frac {\csc ^{3}{\left (e + f x \right )}}{\sqrt {a + b \tan ^{2}{\left (e + f x \right )}}}\, dx \]

input
integrate(csc(f*x+e)**3/(a+b*tan(f*x+e)**2)**(1/2),x)
 
output
Integral(csc(e + f*x)**3/sqrt(a + b*tan(e + f*x)**2), x)
 
3.2.20.7 Maxima [F]

\[ \int \frac {\csc ^3(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx=\int { \frac {\csc \left (f x + e\right )^{3}}{\sqrt {b \tan \left (f x + e\right )^{2} + a}} \,d x } \]

input
integrate(csc(f*x+e)^3/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(csc(f*x + e)^3/sqrt(b*tan(f*x + e)^2 + a), x)
 
3.2.20.8 Giac [F]

\[ \int \frac {\csc ^3(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx=\int { \frac {\csc \left (f x + e\right )^{3}}{\sqrt {b \tan \left (f x + e\right )^{2} + a}} \,d x } \]

input
integrate(csc(f*x+e)^3/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
sage0*x
 
3.2.20.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\csc ^3(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx=\int \frac {1}{{\sin \left (e+f\,x\right )}^3\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}} \,d x \]

input
int(1/(sin(e + f*x)^3*(a + b*tan(e + f*x)^2)^(1/2)),x)
 
output
int(1/(sin(e + f*x)^3*(a + b*tan(e + f*x)^2)^(1/2)), x)